
Proceedings of Inverse Problems Symposium
East Lansing, Michigan, USA

11-12 June 2007

PARAMETER ESTIMATION ANALYSIS OF DIFFUSION-WEIGHTED MRI
PROTOCOLS USED FOR SOFT TISSUE FIBER RECONSTRUCTION

L. Guy Raguin∗

Department of Mechanical Engineering
Department of Radiology
Michigan State University

East Lansing, Michigan, 48824, USA
Email: raguin@msu.edu

Shantanu Majumdar
Satish S. Udpa

Department of Electrical & Computer Engineering
Michigan State University

East Lansing, Michigan, 48824

INTRODUCTION
Quantitative biomedical imaging often involves the estimation
of biophysically relevant parameters from a series of images by
integrating our knowledge of the underlying physics of the prob-
lem into the image post-processing, thereby solving inverse prob-
lems. Since the observation that magnetic resonance imaging
(MRI) can be made sensitive to water diffusion in tissues [1], a
plethora of work has focused on using diffusion-weighted mag-
netic resonance imaging (DWMRI) to track fibers non-invasively
in biological soft tissue. In the study of the central and peripheral
nervous system, DWMRI can provide the distribution and orien-
tations of neuron bundles inside elementary volumes (voxels),
as well as estimates of the diffusion characteristics within brain
compartments (axons, extra-axonal medium) [2], while its appli-
cation in skeletal muscle studies recovers the orientationof my-
ofiber bundles [3]. The sizes of individual axons and myofibers
(both< 50 µm) typically fall under the spatial resolution used in
DWMRI (about 1 mm for clinical systems), thus some modeling
is required to extract quantitative sub-voxel information.

DWMRI produces maps of the echo attenuation, which de-
pend on the local diffusion process and are indexed by a vector in
q-space corresponding to the experimental parameters [4]. Dif-
ferent modalities exist for post-processing, and diffusion tensor
imaging (DTI), an anisotropic unrestricted diffusion model, is
the most commonly used. DTI reconstructs the local “apparent
diffusion tensor” (ADT, symmetric3 × 3 matrix), by fitting the
echo attenuation,E, to a 3-D Gaussian function ofq, EDTI [2].
The fiber orientation angles are identified with the eigenvector
corresponding to the ADT maximum eigenvalue. Theq-space
sampling schemes have typically been chosen independentlyof
the post-processing models [5]. We propose to investigate the
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advantages of using model-based optimal sampling schemes for
the case where it is knowna priori that the fiber orientations are
within a finite region.

METHODOLOGY
For analysis, the physical model consists of a bundle of imperme-
able water-filled cylindrical fibers in the voxel of interest, which
is the restricted diffusion model used for the quantitativeanalysis
of q-space MRI data (QUAQ) in [6]. The analytical expression
for the measured normalized echo attenuation inq-space,EQ,
for QUAQ is obtained by solving the diffusion equation [7], and
depends on four model parameters – molecular self-diffusion co-
efficient D, individual fiber diametera, and orientation angles
(θF, φF) – while the model parameters forEDTI are the six inde-
pendent coefficients of the ADT. The sensitivity coefficients for
each fitting parameter at the sampling points can be computed,
and arranged into a sensitivity matrixX. The sampling strategy
that maximizesχ1 = det(XT X), is such that the correlation
of the sensitivity coefficients between parameters and the size of
the confidence intervals for the estimated parameters are mini-
mized [8]. A spacing constraint is added in the form of a metric
χ2 and a Lagrange multiplierλ, so that the final function maxi-
mized via the gradient method isχ = χ1 + λχ2. The sampling
points are restricted to be on a sphere inq-space, as in current
imaging protocols.

The metricχ1 can be normalized by usingχ1,min, the value
obtained for the minimum number of sampling locations after
optimization (setSmin, with Nmin locations) for which the in-
verse problem can be solved, and the number of model parame-
tersM . The normalized metric,χ∗

1 = (Nmin/N)Mχ1/χ1,min,
is such thatχ∗

1 = 1 when the locations inSmin are sampled re-
peatedly, and allows the comparison of sampling schemes.
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Figure 1. 30-point sampling schemes on a sphere in q-space: (A)

ICOSA15; (B) QUAQ-based optimal sampling. The cross indicates the

fiber orientation used for optimization.

RESULTS
The resulting model-based optimized sampling strategy using 30
q vectors for the QUAQ model is shown in Fig.1 (λ = 0.25), and
compared with a relatively uniform sampling scheme (based on a
icosahedron, ICOSA15). The improvement ratio forχ1 between
the optimal sampling to ICOSA15 is 2.79. Monte Carlo simula-
tions using 400 trials reveal that the QUAQ-optimized sampling
scheme leads to a significant improvement in terms of the spread
of the results for the fiber orientations of about 30%.

Model-based optimal sampling strategies would be used
when a priori knowledge that the fiber orientations are within
a finite region is available. They can be compared to existing
protocols by plotting the value ofχ∗

1, which only depends on
the angleα between the fiber orientation used for the optimiza-
tion and the actual fiber orientation, as in Fig.2 (by symmetry,
α ∈ [0, π

2
]). ICOSA15 is used for any fiber orientation, andχ∗

1

varies between 0.3 and 0.5. The QUAQ-based optimal sampling
scheme yieldsχ∗

1 values that are above 0.3 for deviation angles
α ≤

2π
5

, andχ∗

1 values that are above 0.5 for deviation angles
α ≤ π

8
.

Model-based optimized sampling schemes appear to be
more sensitive than traditional sampling schemes for a large
range of possible fiber orientations, and therefore can produce
parameter estimates with higher confidence. Experiments will be
performed at the Biomedical Imaging Research Center at MSU
(http://www.birc.msu.edu) for validation.

Figure 2. χ∗

1 as a function of angle α between the assumed and ac-

tual fiber orientation for ICOSA15 (dashed line) and QUAQ-based optimal

sampling (solid line).
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