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INTRODUCTION
Quantitative biomedical imaging often involves the estiora
of biophysically relevant parameters from a series of insamye
integrating our knowledge of the underlying physics of thetp
lem into the image post-processing, thereby solving irezpreb-
lems. Since the observation that magnetic resonance igagin
(MRI) can be made sensitive to water diffusion in tissuds 4
plethora of work has focused on using diffusion-weightedima
netic resonance imaging (DWMRI) to track fibers non-invaliv
in biological soft tissue. In the study of the central andiezral
nervous system, DWMRI can provide the distribution andrerie
tations of neuron bundles inside elementary volumes (&xel
as well as estimates of the diffusion characteristics witirain
compartments (axons, extra-axonal mediugh)while its appli-
cation in skeletal muscle studies recovers the orientatiany-
ofiber bundles3]. The sizes of individual axons and myofibers
(both< 50 pm) typically fall under the spatial resolution used in
DWMRI (about 1 mm for clinical systems), thus some modeling
is required to extract quantitative sub-voxel information
DWMRI produces maps of the echo attenuation, which de-
pend on the local diffusion process and are indexed by a vgcto
g-space corresponding to the experimental paramedgrjf-
ferent modalities exist for post-processing, and diffasgiensor
imaging (DTI), an anisotropic unrestricted diffusion mfde
the most commonly used. DTI reconstructs the local “apfaren
diffusion tensor” (ADT, symmetri@ x 3 matrix), by fitting the
echo attenuation//, to a 3-D Gaussian function af, Epry [2].
The fiber orientation angles are identified with the eigetorec
corresponding to the ADT maximum eigenvalue. Tgispace
sampling schemes have typically been chosen independshtly
the post-processing modelS][ We propose to investigate the
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advantages of using model-based optimal sampling schesnes f
the case where it is knowanpriori that the fiber orientations are
within a finite region.

METHODOLOGY

For analysis, the physical model consists of a bundle of rmpe
able water-filled cylindrical fibers in the voxel of intergathich

is the restricted diffusion model used for the quantitagimalysis
of g-space MRI data (QUAQ) ing]. The analytical expression
for the measured normalized echo attenuatiog-space,£q,
for QUAQ is obtained by solving the diffusion equatiofj,[and
depends on four model parameters — molecular self-diffusie
efficient D, individual fiber diameter, and orientation angles
(0%, ¢r) —while the model parameters féip; are the six inde-
pendent coefficients of the ADT. The sensitivity coefficgefar
each fitting parameter at the sampling points can be computed
and arranged into a sensitivity mattk. The sampling strategy
that maximizesy; = det(X” X), is such that the correlation
of the sensitivity coefficients between parameters anditeecs
the confidence intervals for the estimated parameters are mi
mized [B]. A spacing constraint is added in the form of a metric
x2 and a Lagrange multipliex, so that the final function maxi-
mized via the gradient methodjis= x1 + Ax2. The sampling
points are restricted to be on a sphereggispace, as in current
imaging protocols.

The metricy; can be normalized by using nin, the value
obtained for the minimum number of sampling locations after
optimization (setSy,i,, with Ny, locations) for which the in-
verse problem can be solved, and the number of model parame-
ters M. The normalized metricy; = (Nuin/N)™ X1/X1.min
is such thaty; = 1 when the locations i%,,;, are sampled re-
peatedly, and allows the comparison of sampling schemes.
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Figure 1. 30-point sampling schemes on a sphere in g-space: (A)
ICOSA15; (B) QUAQ-based optimal sampling. The cross indicates the
fiber orientation used for optimization.

RESULTS

The resulting model-based optimized sampling strategyg30
q vectors for the QUAQ model is shown in Figj(\ = 0.25), and

compared with a relatively uniform sampling scheme (basea o

icosahedron, ICOSA15). The improvement ratio ferbetween

the optimal sampling to ICOSA15 is 2.79. Monte Carlo simula-

tions using 400 trials reveal that the QUAQ-optimized santpl

scheme leads to a significant improvement in terms of theaspre
of the results for the fiber orientations of about 30%.

whe

Model-based optimal sampling strategies would be used
na priori knowledge that the fiber orientations are within

a finite region is available. They can be compared to existing
protocols by plotting the value of;, which only depends on
the anglen between the fiber orientation used for the optimiza-

tion
(NS

and the actual fiber orientation, as in FBj(by symmetry,
[0, 5]). ICOSA15 is used for any fiber orientation, agg

varies between 0.3 and 0.5. The QUAQ-based optimal sampling
scheme yieldg; values that are above 0.3 for deviation angles
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Model-based optimized sampling schemes appear to be

andx; values that are above 0.5 for deviation angles

more sensitive than traditional sampling schemes for aelarg
range of possible fiber orientations, and therefore canymed
parameter estimates with higher confidence. Experimetitbavi
performed at the Biomedical Imaging Research Center at MSU
(http://www.birc.msu.edyfor validation.
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Figure 2. xf as a function of angle « between the assumed and ac-
tual fiber orientation for ICOSA15 (dashed line) and QUAQ-based optimal
sampling (solid line).
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